Toxoplasma IWS1 determines fitness in interferon-γ-activated host cells and mice by indirectly regulating ROP18 mRNA expression (Yamamoto Lab, in mBio)

Toxoplasma gondii secretes various virulence effector molecules into host cells to disrupt host interferon-γ (IFN-γ)-dependent immunity. Among these effectors, ROP18 directly phosphorylates and inactivates IFN-inducible GTPases, such as immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs), leading to the subversion of IFN-inducible GTPase-induced cell-autonomous immunity. The modes of action of ROP18 have been studied extensively; however, little is known about the molecular mechanisms by which ROP18 is produced in the parasite itself. Here, we report the role of T. gondii transcription factor IWS1 in ROP18 mRNA expression in the parasite. Compared with wild-type virulent type I T. gondii, IWS1-deficient parasites showed dramatically increased loading of IRGs and GBPs onto the parasitophorous vacuole membrane (PVM). Moreover, IWS1-deficient parasites displayed decreased virulence in wild-type mice but retained normal virulence in mice lacking the IFN-γ receptor. Furthermore, IWS1-deficient parasites showed severely decreased ROP18 mRNA expression; however, tagged IWS1 did not directly bind with genomic regions of the ROP18 locus. Ectopic expression of ROP18 in IWS1-deficient parasites restored the decreased loading of effectors onto the PVM and in vivo virulence in wild-type mice. Taken together, these data demonstrate that T. gondii IWS1 indirectly regulates ROP18 mRNA expression to determine fitness in IFN-γ-activated host cells and mice.

 

This article is published in mBio on January 30, 2023.

Title: "Toxoplasma WS1 determines fitness in interferon-γ-activated host cells and mice by indirectly regulating ROP18 mRNA expression”

Authors: Emi Hashizaki, Miwa Sasai, Daisuke Okuzaki, Tsubasa Nishi, Takashi Kobayashi, Shiroh Iwanaga and Masahiro Yamamoto