"The role of myeloid cells to lung cancer development and treatment"

Esra A. Akbay

(Assistant Professor, Department of Pathology, University of Texas Southwestern Medical Center)

Date	Friday, October 20, 2017
Time	10:00 am - 11:00 am
Venue	Biken Hall, RIMD Main Building 1F

Brief summary

Tumor orchestrated changes in the immune cell composition in the microenvironment limits generation of sufficient anti-tumor immune responses. One of the most prominent features of Kras mutant lung tumors is their rich myeloid cell content. To study this systematically, we generated bi-transgenic mice expressing a conditional *IL-17A* allele along with conditional Kras^{G12D} and performed immune phenotyping and survival analysis. Tumors in IL-17:Kras^{G12D} mice grew more rapidly, resulting in a significantly shorter survival as compared to Kras^{G12D}. IL-6, G-CSF, MFG-E8, and CXCL1 were increased in the lungs of IL17:Kras mice. Time course analysis revealed that tumor-associated neutrophils (TANs) were significantly elevated, and lymphocyte recruitment was significantly reduced in IL17:Kras^{G12D} mice as compared to Kras^{G12D}. In therapeutic studies, PD-1 blockade was not effective in treating IL-17:Kras^{G12D} tumors. In contrast, blocking IL-6 or depleting neutrophils with an anti-Ly-6G antibody in the IL17:Kras^{G12D} tumors resulted in a clinical response associated with T cell activation. Through RNA sequencing of sorted neutrophils, we identified arginase 1 as one of the highly induced genes in the tumor as compared to the normal lungs. Inhibition of arginase activity resulted in a similar therapeutic effect highlighting the importance of myeloid cell derived arginase as a biomarker of resistance to immune checkpoint blockade and a viable therapeutic target.

Host Shohei Koyama (Department of Immunopathology, IFReC/ Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University)