セミナーのお知らせ

"DNA-encoded chemistry technology: an effective and efficient approach to small molecule discovery in academia"

Professor, Barry A. Morgan

Department of Pathology and Immunology, and Department of Pharmacology, and Directory of Discovery, Center for Drug Discovery, Baylor College of Medicine, Houston TX

Date: Jun 26th Friday Time: 11 am to 12 pm Location: Biken Hall, 1st Floor, Main building, Research Institute for Microbial Diseases (微研ホール、微生物病研究所 本館 1F)

Drug discovery and development is an astonishingly expensive, high-risk endeavor. The preclinical phase of small molecule drug discovery currently utilizes high-throughput screening (HTS) of curated collections of ~1M compounds, followed by extensive medicinal chemistry, and typically takes longer than 4 years and costs greater than \$20 million for each compound moved to consideration for clinical evaluation. These costs are clearly untenable in academia, and increasingly unsustainable in industry. DNA–encoded chemistry technology (DEC-Tec) has emerged as an alternative technology for small molecule discovery that shortens the time frame and resolves the economic shortcomings of the HTS/ medicinal chemistry model. DEC-Tec addresses these issues by enabling the assembly and interrogation by selection from a mixture of billions of compounds resulting in the direct discovery of high-affinity drug-like ligands for disease targets. The talk will outline the science behind DEC-Tec, and illustrate the design, assembly and use of DNA-encoded libraries for small molecule discovery.

Reference:

- Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. Bioorg Med Chem 22, 2353-2365 (2014).
- Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat Chem Biol 5, 647-654 (2009).

連絡先:遺伝子機能解析分野 伊川正人(<u>ikawa@biken.osaka-u.ac.jp</u>) Tel 06-6879-8373

※医学系研究科単位認定の対象となるセミナーです。